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1. INTRODUCTION  

Yutai Katoh (katohy@ornl.gov) and Bill Wiffen 

 

The realization of fusion energy is a formidable challenge, with significant achievements resulting from 

close integration of the plasma physics and applied technology disciplines.  Presently, the most significant 

technological challenge for planned fusion power systems is the inability of current materials and 

components to withstand the harsh fusion nuclear environment.  The overarching goal of the ORNL 

Fusion Materials Program is to provide the applied materials science support and materials understanding 

to underpin the ongoing DOE Office of Science Fusion Energy Program while developing materials for 

fusion power systems.  In doing so the program continues to be integrated both with the larger U.S. and 

international fusion materials communities and with the international fusion design and technology 

communities.   

 

This long-running ORNL program continues to pursue development of low activation structural materials 

such as the reduced activation ferritic/martensitic steels, higher strength/higher creep resistant/radiation 

resistant advanced steels, and silicon carbide composites.  Focus tasks within the steels portfolio are 

development of castable nanostructured alloys, exploratory work on Bainitic steels and a helium-effects 

experiment using isotopically separated iron-54. Parallel to this is the increased emphasis on radiation 

effects, high heat flux testing and the development of refractory metals.  This includes the use of an 

ORNL Plasma Arc Lamp Facility adapted for the thermal testing of irradiated materials, the development 

and evaluation of new tungsten materials, and the study and understanding of the irradiation performance 

of tungsten.  In each case the materials are being developed in a design-informed fashion where properties 

improvements are led by fusion-relevant design studies and directed at advancing the Technology 

Readiness Level of the material systems.   

 

New work supported by an Early Career Award is looking in depth at the materials side of the plasma 

materials interactions, characterizing the materials response to plasma impingement and determining the 

controlling mechanisms of the materials behavior. 

 

A limited effort continues to examine functional and exploratory materials.  In the area of diagnostics, 

ORNL supports basic irradiation materials science of ceramics that could be used in diagnostic systems.  

For high-temperature superconductors, ORNL has completed a limited program to quantify the irradiation 

sensitivity of the most recently developed tape materials. Studies of the MAX-phase ceramics, high 

entropy alloys, and bulk metallic glasses were continued as the materials that potentially possess 

exceptional or unique radiation tolerance.  

 

Finally, this program integrates fundamental modeling into the development efforts as much as 

practicable.  

 

This fusion materials program makes heavy reliance on neutron irradiation in HFIR, the High Flux 

Isotope Reactor at ORNL. This is complemented by use of the ORNL-University of Tennessee ion 

irradiation facility and other available accelerator facilities when these are better suited to explore 

fundamental aspects of materials behavior under irradiation.  

 

This document summarizes FY2016 activities supporting the Office of Science, Office of Fusion Energy 

Sciences Materials Research for MFE carried out by ORNL.  The organization of the report is mainly by 

material type, with sections on specific technical activities.  

 

mailto:katohy@ornl.gov
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A continuing activity initiated several years ago, ñMaterials Engineering in Support of the FNSF 

Program,ò is reported in Section 10.  

 

The fusion materials effort consists of a wide array of tasks and collaborations both within the US and 

with international partners.  The major continuing international collaborating partners are the Japan 

Agency for Quantum and Radiological Science and Technology (QST, reorganized and transferred from 

Japan Atomic Energy Agency, the US DOE-JAEA collaboration, focused on structural materials), the 

Japanese National Institute for Fusion Sciences (the PHENIX collaboration, emphasizing plasma facing 

materials and tritium fuel issues) and the Karlsruhe Institute of Technology in Germany (examining steel 

materials). Separately identified since FY2015 is a domestic collaboration, designed to provide specimens 

from the archive of HFIR-irradiated material to other OFES funded researchers to further their studies. 

Status of this work is reported in Section 12.1. 
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2. FUSION MATERIAL IRRA DIATION TEST STATION  (FMITS) AT SNS  

Mark Wendel (wendelmw@ornl.gov) 

 

The Fusion Materials Irradiation Test Station (FMITS) is a design concept for installation at the 

Spallation Neutron Source (SNS) Facility. The project developed the conceptual design, then flushed out 

design details in earlier years and in FY2015 looked in depth at several critical issues. The main goal of 

this final effort in FY2016 was to mitigate project technical risks. 

 

The FMITS-type target seal, also called the double inflatable seal, was fabricated by KSM Corporation 

and is onsite at ORNL. The SNS target module seal test tank was modified and testing of the KSM part is 

being performed by SNS. Tests will be performed to verify robust function of the new double inflatable 

seal. 

 

A specially designed containment tube with non-uniform wall thickness is required for the safety case of 

FMITS. The tube design biases the direction of any over-pressurization failure away from the SNS 

hydrogen moderators and mercury vessel. Destructive testing was completed at Fike, Inc. in Kansas City, 

Missouri on December 2, 2015. An ORNL engineer witnessed the testing and confirmed that the 20 tubes 

failed in the expected direction within the required range of burst pressure. This company is the same 

company that designed, fabricated, and tested the rupture discs that are used in HFIR irradiation 

experiment capsules. 

 

All planned work on the FMITS project has been completed, and relevant documents and hardware are 

archived.  The technical risks to the project have been greatly reduced due to the recent work. Any further 

activities to advance the FMITS await decisions and guidance from DOE.  
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3. ADVANCED STEELS 

3.1 DEVELOPMENT OF HIGH -Cr  ODS ALLOYS WITH Z r  ADDITIONS FOR FUSION  

REACTOR APPLICATIONS  

S. Dryepondt (dryepondtsn@ornl.gov), C. Massey, D. T. Hoelzer, and K. A. Unocic  

 

OBJECTIVE  

 

The dual coolant lead-lithium (DCLL) blanket concept requires ferritic steels with sufficient Pb-Li 

compatibility to demonstrate viable blanket operation in a DEMO-type fusion reactor. This project aims 

at developing oxide dispersion strengthened (ODS) FeCrAl alloy with excellent compatibility with Pb-Li 

due to the formation of a protective Al-rich scale and superior creep resistance at temperature up to 700-

800ºC. 

 

BACKGROUND  

 

The first generation of ODS alloys was fabricated by ball milling Fe -12wt.%Cr-5Al powder with Y2O3 + 

ZrO2, Y2O3 + HfO2 and Y2O3 + TiO2 powder. All the alloys showed good tensile strength but limited 

ductility at temperature ranging from room to 800ºC, and good compatibility with Pb-Li at 700ºC. In 

addition, the Zr-containing alloy (125YZ alloy) exhibited superior creep resistance at 700 and 800ºC. A 

second generation of ODS FeCrAl alloys was therefore fabricated by ball milling Fe-10-12Cr-6Al-Zr 

powders with Y2O3. The goal was to maintain the ODS FeCrAl mechanical strength but increase the alloy 

ductility to improve the alloy fabric ability. 

 

PROGRESS AND STATUS 

 

First generation ODS FeCrAl 

Extensive characterization by transmission electron microscopy (TEM) of the first generation 125YZ 

alloy revealed the presence of Y3Al 5O12 (YAG), Al 2O3 and Zr (C,N) precipitates, but no Zr-rich oxides. 

The proximity of the YAG and Zr-rich particles shown in Figure 1 indicates that co-precipitation of these 

two particles is likely taking place.  

 

ure 1 

Figure 1. a) High-resolution TEM image of  Zr-rich particle formed in Fe-12Cr-5Al-Zr -Y2O3 alloy identified 

as Zr(C,N) with the space group Fm3m using b) FFT, and c) corresponding EDS Y, Zr, Al, and O elemental 

maps showing the special proximity between the Zr(C,N) and Y-Al -O particles.  
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As shown in Figure 2, TEM characterization was also conducted on the first generation ODS FeCrAl 

specimens exposed in static Pb-17Li for 1000 h at 700ºC. The thin oxide scales observed at the specimen 

surface, 0.5 to 1.5 um thick, were identified as LiAlO2 layers. Voids and Zr, Hf or Ti-rich precipitates 

were noted in the LiAlO2 scale for the 125YZ (Figure 2), 125YH or 125YT alloys, respectively.  

 

 

 
 
Figure 2. Cross-section of the oxide formed on 125YZ after exposure for 1000 h at 700ºC in static Pb-17Li, 

(a,c) BF-STEM images, b) HAADF-STEM images, d) EDS point spectrum generated from particle within the 

oxide. 

 

Second generation ODS FeCrAlZr 

The second generation ODS FeCrAlZr alloys were fabricated in collaboration with the FCRD-funded 

project on ODS FeCrAl alloys for accident tolerant fuel cladding, [1] and the compositions of some of the 

first and second generation ODS FeCrAl alloys are given in Table 1. To improve ODS FeCrAl alloy 

ductility, the effects of ball milling time and extrusion temperature were assessed. Figure 3 shows that 

increasing the extrusion temperature for Fe-10Cr-6Al-0.3Zr+Y2O3 (106ZY) alloys led to a decrease of 

alloy strength but an increase of alloy ductility. The ultimate goal of the FCRD project is to produce 

tubing with a wall thickness < 500 um. Extruding the powder at 1050ºC or above is therefore 

recommended to decrease the alloy hardness and facilitate tube fabrication. For the fusion program, the 

106ZY alloy extruded at 900ºC (106ZY9C) was particularly attractive due to superior tensile strength and 

ductility in the 20-800ºC range compared to the strength and ductility of the first generation 125YZ alloy. 
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This alloy was therefore selected for creep testing at 700ºC and 800ºC, with applied loads of 100 and 140 

MPa, respectively. As can be seen in Figure 4a, the alloy is at least as creep resistant as the first 

generation Hf-containing 125YH alloy. Longer exposure times are required to evaluate the creep 

performance of the alloy at 700ºC, but it is worth noting that the 125YZ specimen tested at 700ºC with an 

applied stress of 140 MPa has now reached 18,000 h, when the expected lifetime for the Zr-containing 

alloy developed in Japan is ~10,000 h with an applied stress of 120 MPa at 700ºC [2]. 

 

 
Table 1.  Alloy chemical compositions (mass% or ppmw for O, C, N and S) determined by inductively 

coupled plasma analysis and combustion analysis. 

 
 

 
 
 

 
 

Figure 3. Tensile properties of the 1
rst

 generation 125YZ alloy, and several 2
nd

 generation ODS Fe-10Cr-6Al-

0.3Zr alloys extruded at temperature ranging from 900ºC to 1050ºC, a) Ultimate tensile strength, b) Plastic 

deformation. 
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Figure 4. a) Comparison of the creep performance at 700ºC of the 125YZ and 106ZY9C alloys with the 

performance of new ODS FeCrAl alloys developed in Japan [2], b) Lifetimes of the 125YZ, 125YT, 125YH 

and 106ZY9C alloys tested at 800ºC with an applied stress of 100 MPa. 

 
FUTURE PLANS 

 

Additional creep tests will be conducted at 700 and 800ºC with higher applied stresses to fully assess the 

creep resistance of alloy 106YZ9C. Collaboration with other Fusion projects will also be initiated to 

perform compatibility and irradiation experiments. Finally, new ODS FeCrAlZr alloys will be fabricated 

using different ball milling and extrusion parameters to further improve the ODS FeCrAl alloy 

mechanical performance.   
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Muthukumar, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and T.F. Abe, J. Nucl. Mater., 

417, 176 (2011). 
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3.2 DEVELOPMENT OF TRANS FORMATION ENHANCED O DS Fe-Cr  ALLOYS  

D.T. Hoelzer (hoelzerd@ornl.gov) 

 

OBJECTIVE  

 

The objective of this task is to develop transformation enhanced oxide dispersion strengthened (ODS) Fe-

10Cr alloys for fusion reactor applications requiring high-temperature strength and toughness properties 

and microstructural stability during exposure to energetic neutrons and transmutated He concentrations. 

 

PROGRESS AND FUTURE DIRECTION 

 

Two ODS Fe-Cr alloys (10YWV and 10YV) were produced by mechanical alloying. The alloyed 

powders of compositions Fe-10Cr-1W-0.3Ti-0.2V and Fe-10Cr-0.3Ti-0.2V (weight percent) were 

produced by Ar gas atomization by ATI Powder Metals. These powders were mixed with 0.3 Y2O3 and 

ball milled in the high kinetic energy CM08 Simoloyer for 40 h in an Ar gas atmosphere. Mild steel cans 

were filled with ~1.3 kg of the 10YWV (Fe-10Cr-1W-0.3Ti-0.2V + 0.3Y2O3) powder and 1 kg of the 

10YV Fe-10Cr-0.3Ti-0.2V + 0.3Y2O3) powder followed by degassing in vacuum at 300ºC and sealing. 

The sealed cans were heated to 850ºC for 1 h followed by extrusion through a rectangular shaped die (2.5 

inch wide and 1.25 inch high) into bars. Figure 5 shows the two extruded bars after the nose and tail 

sections were cut off to locate the ODS sections.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Extruded bars of the ODS 10WV (Fe-10Cr-1W-0.3Ti-0.2V + 0.3Y2O3) and 10V (Fe-10Cr-0.3Ti-0.2V 

+ 0.3Y2O3) alloys.   

 

Samples 0.5 and 2 inches long were cut from the nose end of the extruded bars to evaluate the effects of 

annealing on the microstructure and tensile properties of the ODS Fe-Cr alloys. The samples will be 

annealed for 8 h in vacuum at temperatures of 1000, 1050, 1100 and 1150ºC. The microstructural 

characterization study will involve scanning electron microscopy and transmission electron microscopy to 

determine which annealing condition causes the optimum degree of partial transformation of fcc-ɔ grains 

from the matrix of ultra-fine bcc-Ŭ grains in the two ODS Fe-Cr alloys. A similar study is planned to 

assess the effects of annealing on the tensile properties by fabricating and testing SS-3 tensile specimens 

from the 2-inch length samples.  
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3.3 DEVELOPMENT OF ADVANCED RAFM STEELS  ï CASTABLE NANOSTRUCTU RED 

ALLOYS  

L. Tan (tanl@ornl.gov)  

 

OBJECTIVE  

 

The current reduced activation ferritic-martensitic (RAFM) steels suffer noticeable strength reduction at 

temperatures above ~500°C, which limits their high temperature applications for future fusion reactors.  

This project is to develop castable nanostructured alloys (CNAs) that are manufacturable and affordable 

advanced RAFM steels, generating a high density of stable nanoprecipitates by optimizing alloy 

compositions and thermomechanical treatment (TMT) to achieve superior high temperature performance.  

SUMMARY  

 

The high-dose Fe
2+

-irradiated samples with dispersed vanadium nitride (VN) nanoprecipitates were 

characterized using transmission electron microscopy (TEM).  The results showed that the particle shape 

was significantly influenced by the ion beam direction.  Ion channeling effect may have occurred in one 

of the conditions.  This study suggests that statistical quantitative analysis of the stability of ultrafine 

particles under heavy ion irradiation experiments may not adequately represent their stability under 

neutron reactor irradiation situation.  Two new heats of CNAs were designed and procured; these 

exhibited much finer Ta-rich precipitates in higher densities than literature-reported F82H.  

PROGRESS AND STATUS 

 

The stability of VN nanoprecipitates dispersed in a ferritic alloy was determined by irradiating samples 

with Fe
2+

 ions  to a peak dose of ~246 displacements per atom (dpa) at 500°C.  The focused ion beam 

technique was used to extract specimens from different grains for TEM microstructural characterization.  

The particle area fraction was analyzed using ImageJ with 200 nm depth bin size, which was normalized 

to 100 nm specimen thickness for each condition.  The particle area fraction results are plotted in Figure 

6, together with the SRIM-calculated depth profiles of dose and implanted iron after two levels of 

irradiation damage.  Two orientation conditions were characterized for the high-dpa sample, which have 

20° and 82° angles between the ion beam direction and the length direction of the nanoprecipitates.  The 

low-dpa sample with 12° of such an angle was characterized before and reanalyzed here following this 

method for comparison.  The remarkable distinction is the high-dpa case with implanted iron 

concentration <0.055 at.% resulted in a noticeable peak of particle area fraction.  Furthermore, the particle 

area fraction evolution of the high-dpa with 82° orientation angle shows a significantly deeper peak 

compared to the SRIM-calculated results, which may suggest an ion channeling effect in this 

configuration.  High resolution TEM images taken from ~650 nm of the samples in the three conditions 

are shown in Figure 6.  The small angles with ion beam approximately parallel to the particle length did 

not much change the shape of the particles.  In contrast, the large angle with ion beam approximately 

perpendicular to the particle length transformed the thin-lath-shaped particles into parallelograms.  

Two new heats of CNAs, designed to have varied precipitate fractions of M23C6 and MX by controlling 

the ratio of C/(Ta+Ti),  were procured from Carpenter Technology.  Figure 7 shows backscattered 

electron images (BEIs) of the two heats (bottom row), illustrating significantly finer Ta-rich particles 

(shown white) with higher densities than the literature data of F82H-BA07 (top row).  
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Figure 6.  SRIM-calculated depth profiles of dose (black) and implanted iron (red) after low (dashed) and 

high (solid) levels of irradiation damage.  The experimentally characterized depth-dependent particle area 

fractions in three conditions are overlapped on the calculated profiles.  Examples of particle shapes at ~650 

nm from surface are shown on right. 

 

 
 

Figure 7.  Backscattered electron images (BEIs) of two heats of CNAs (05-3 and 06-3) compared to BEI and 

Ta-EDS of F82H-BA07.  

FUTURE PLANS 

 

TMT exploration and mechanical property tests of the two new heats of CNAs are being pursued. This 

involves routine microstructural characterization to support the processes and observations.  Neutron 

irradiation experiments of selected CNAs will be conducted in HFIR.  
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3.4 BAINITIC STEEL DEVEL OPMENT FOR FUSION APPLICATIONS  

Y. Yamamoto (yamamotoy@ornl.gov) 

 

OBJECTIVE  
 

This work aims to develop a new bainitic steel, based on 3Cr-3WV(Ta) steel originally developed at 

ORNL, with mechanical properties of both base metal and weldments superior to those of existing 

commercial bainitic steels or ferritic-martensitic (F-M) steels. The target applications are high 

temperature structural components in fusion reactors such as the vacuum vessel, the structural ring which 

supports the blanket modules, and magnet shields, to be used at or above the 400-500ºC temperature 

range. Improvement of long-term creep properties by introducing fine and stable second-phase 

dispersions, together with maintaining good weldability and no requirement of post-weld heat treatment 

(PWHT), is targeted via optimization of alloy composition and thermo-mechanical heat treatment. 

 

 

SUMMARY  
 

A new alloy design strategy for PWHT-free bainitic steel has been proposed; maintaining high 

hardenability during cooling combined with relatively low as-normalized hardness is the target to be 

achieved through optimization of alloy composition, in order to reduce property inhomogeneity across 

weldments. Four new heats of 3Cr-3WVTa base bainitic steels with low carbon combined with high Mn 

and Si additions were prepared, as guided by computational thermodynamics. The steels with the 

combination of 0.05% C and 2 or 3% Mn additions have successfully showed fully bainitic 

microstructure together with less hardness difference between as-normalized and tempered conditions. 

High temperature tensile properties also supported achieving the goal of improvement of mechanical 

properties at elevated temperatures. Evaluation of creep-rupture properties is currently in progress.  

 

 

PROGRESS AND STATUS 
 

Four lab-scale ingots (13 x 25 x 125 mm size) of new steels were prepared by arc-melting and drop 

casting at ORNL. Table 2 summarizes the nominal compositions of the steels in the present study, 

together with that of the reference base 3Cr-3WVTa steel prepared in the previous effort. The alloy 

compositions were selected based on the new alloy design strategy to expect relatively low as-normalized 

hardness (via 0.05C), high hardenability (high Mn additions), as well as supplemental oxidation 

resistance (0.5Si). The phase equilibrium and the CCT diagrams (not shown in this report) calculated by 

JMatPro version 9 with Fe database were used for the alloy selection. 

 
Table 2. Nominal compositions of the steels in the present study 

 

Heat 
Composition, wt% (balance Fe) 

Remarks 
C Mn Si Cr V W Ta 

2751 0.10 0.4 0.14 3 0.2 3 0.1 Base, reference 

LC 0.05 0.4 0.16 3 0.2 3 0.1 Low C 

MSLC1 0.05 1.00 0.5 3 0.2 3 0.1 Low C + 1Mn + 0.5Si 

MSLC2 0.05 2.00 0.5 3 0.2 3 0.1 Low C + 2Mn + 0.5Si 

MSLC3 0.05 3.00 0.5 3 0.2 3 0.1 Low C + 3Mn + 0.5Si 
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Figure 8 illustrates the yield strengths (YS) of the new steels after tempering at 700°C for 1h, plotted as a 

function of test temperature. The YS of the base 3Cr-3WVTa steel and Gr 91 F-M steel are also plotted 

for comparison. All new steels showed lower YS than the base steel which could mainly be due to low C 

addition, although they still exhibited higher YS than Gr 91 F-M steel up to 600°C. The higher Mn 

addition resulted in the higher YS, but the effect of the Mn additions in the range studied was not so 

significant.  

 
 
Figure 8. Yield strength of the base and new 3Cr-3WVTa bainitic  steels plotted as a function of test time, 

together with the data for Grade 91 (Mod. 9Cr-1Mo) F-M steels obtained from NIMS data sheets. 

 

The cross-weld microstructure was characterized using a map hardness analysis.  Figure 9 shows an 

example of the cross-sectional micrograph of autogenous gas tungsten arc welds (GTAW) made on the 

tempered bainitic steel, together with the hardness contour maps measured from the base, LC, and 

MSLC2, after welding. All metals were tempered prior to welding. The weld metal on the base 3Cr-

3WVTa steel showed hardness more than 400 HV which was significantly higher than the base metal 

(~350 HV). The inter-critical heat affected zone (ICHAZ) showed lower hardness (~300 HV) than the 

base metal. Such hardness distribution could cause inhomogeneous properties across the weldments. The 

hardness map of the tempered LC showed very low hardness (~270 HV) in the base metal, and almost the 

same hardness as the weld metal hardness. The hardness at ICHAZ was ~220 HV. The hardness gap 

between the base and the ICHAZ was similar to the base 3Cr-3WVTa steel. On the other hand, the 

MSLC2 showed slightly higher hardness at the weld metal than the base metal (~300 HV and ~280 HV, 

respectively), together with the ICHAZ hardness of ~260 HV. It was obvious that MSLC2 exhibited less 

hardness variation compared to the other steels, which satisfied the alloy design strategy to reduce the 

hardness variation across the weldments. 

  

FUTURE PLANS 

 

Two new steels will be down selected for a heat-size scale-up effort, and further property evaluation and 

detailed characterization will be conducted. Short- and intermediate-term creep-rupture properties of the 

base and the cross-weld specimens will be evaluated in the temperature range  550 to 600°C.  
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Figure 9. An example of cross-sectional micrograph of autogenous GTAW welds on a tempered bainitic steel 

(a), and the hardness contour maps (b, c, d); (a, b) base 3Cr-3WVTa, (c) LC, and (d) MSLC2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


























































































































































































